Updating a variable in sas

Due to the specification of the Amb challenge, this, ironically (given the notion of ambiguous functions), only produces one solution not 92. make Path c n | valid c && safe c 1 = n:c where valid c | n =:= column = uniq c where uniq [] = True uniq (c:cs) = n /= c && uniq cs safe [] _ = True safe (c:cs) k = abs (n-c) /= k && safe cs (k 1) where abs x = if x -- N-queens puzzle implemented with "Distinct Choices" pattern-- Sergio Antoy-- Tue Sep 4 PDT 2001-- updated: Mon Sep 23 PDT 2002 import Integer queens x | y =:= permute x & void (capture y) = y where y free capture y = let l1,l2,l3,y1,y2 free in l1 [y1] l2 [y2] l3 =:= y & abs (y1-y2) =:= length l2 1 -- negation as failure (implemented by encapsulated search):void c = (findall \_-c) =:= [] -- How does this permutation algorithm work?

It is trivial to update Amb (might be better called a backtracker rather than Amb too) but here it is just used to show how easy it is to go from a generate and prune Linq solution to a backtrack solution. columns and sees if the solution can be extended by adding a queen at row n of column k 1. -- Only the elements [0,1,...,n-1] can be permuted.-- The reason is that each element is used as an index in a list.-- A list, called store, of free variables of length n is created.-- Then, the n iterations described below are executed.-- At the i-th iteration, an element, say s,-- of the initial list is non-deterministically selected.-- This element is used as index in the store.-- The s-th variable of the store is unified with i.-- At the end of the iterations, the elements of the store-- are a permutation of [0,1,...,n-1], i.e., the elements-- are unique since two iterations cannot select the same index. Y = Y -- A solution is represented by a list of integers.-- The i-th integer in the list is the column of the board-- in which the queen in the i-th row is placed.-- Rows and columns are numbered from 1 to 8.-- For example, [4,2,7,3,6,8,5,1] is a solution where the-- the queen in row 1 is in column 4, etc.-- Any solution must be a permutation of [1,2,...,8].

Updating a variable in sas

Q.../**Return true if queen placement q[n] does not conflict withother queens q through q[n-1]*/is Consistent(List q, int n) return true;} /**Print out N-by-N placement of queens from permutation q in ASCII.

| ------------- 6 Queen : 4 7 Queen : 40 8 Queen : 92 9 Queen : 352 10 Queen : 724 11 Queen : 2680 12 Queen : 14200 n_queens:task().

With this, the number of possibilities is reduced from n! If two queens occupy the same diagonal, the line connecting them has slope 1 or ¯1 .

Conversely, if the line connecting two queens has slope 1 or ¯1 , the two queens share a diagonal.

* N-QUEENS PROBLEM 04/09/2015 MACRO &LAB XDECO ®,&TARGET&LAB B I&SYSNDX branch around work area P&SYSNDX DS 0D, PL8 packed W&SYSNDX DS CL13 char I&SYSNDX CVD ®, P&SYSNDX convert to decimal MVC W&SYSNDX,=X'40202020202020202020212060' nice mask EDMK W&SYSNDX, P&SYSNDX 2 edit and mark BCTR R1,0 locate the right place MVC 0(1, R1), W&SYSNDX 12 move the sign MVC &TARGET.(12), W&SYSNDX move to target MENDNQUEENS CSECT SAVE (14,12) save registers on entry BALR R12,0 establish addressability USING *, R12 set base register ST R13, SAVEA 4 link my SA-my SA LR R13, R11 set my SA pointer LA R7, LL l LA R6,1 i=1LOOPI LR R1, R6 do i=1 to l SLA R1,1 i*2 STH R6, A-2(R1) a(i)=i LA R6,1(R6) i=i 1 BCT R7, LOOPI loop do i OPENEM OPEN (OUTDCB, OUTPUT) open the printer file LA R9,1 n=1 start of loop LOOPN CH R9, L do n=1 to l BH ELOOPN if nn BH E80 then goto e80 LR R11, R10 j=i E50 LR R1, R10 i SLA R1,1 i*2 LA R6, A-2(R1) [email protected](i) LR R1, R11 j SLA R1,1 j*2 LA R7, A-2(R1) [email protected](j) MVC Z,0(R6) z=a(i) MVC Y,0(R7) y=a(j) LR R3, R10 i SH R3, Y -y AR R3, R9 p=i-y n LR R4, R10 i AH R4, Y y BCTR R4,0 q=i y-1 MVC 0(2, R6), Y a(i)=y MVC 0(2, R7), Z a(j)=z LR R1, R3 p SLA R1,1 p*2 LH R2, U-2(R1) u(p) LTR R2, R2 if u(p)0 BNE E60 then goto e60 LR R1, R10 i SLA R1,1 i*2 STH R11, S-2(R1) s(i)=j LA R0,1 r0=1 LR R1, R3 p SLA R1,1 p*2 STH R0, U-2(R1) u(p)=1 LR R1, R4 q AR R1, R5 q r SLA R1,1 (q r)*2 STH R0, U-2(R1) u(q r)=1 LA R10,1(R10) i=i 1 B E40 goto e40E60 LA R11,1(R11) j=j 1 CR R11, R9 if j ; "eight queens problem" benchmark test .radix 16 0 nop ; mov #scr,@#E800 mov #88C6,@#E802; clear the display RAM mov #scr,r0 mov #1E0,r1cls: clr (r0) sob r1,cls; display the initial counter value clr r3 mov #scr,r0 jsr pc,number; perform the test jsr pc,queens; display the counter mov #scr,r0 jsr pc,numberfinish: br finish ; display the character R1 at the screen address R0,; advance the pointer R0 to the next columnputc: mov r2,-(sp); R1 (* ****** ****** *)//// Solving N-queen puzzle//(* ****** ****** *)//// How to test:// ./queens// How to compile:// patscc -DATS_MEMALLOC_LIBC -o queens queens.dats//(* ****** ****** *)//#include"share/atspre_staload.hats"//#include"share/HATS/atspre_staload_libats_ML.hats"//(* ****** ****** *) funsolutions(N:int) = let//funshow( board: list0(int)) : void =( list0_foreachifsafe(i, i 1, i-1, xs)then let val xs = cons0(i, xs)in if col = N then show(xs) else loop(col 1, xs)end // end of [then])//in loop(1, nil0())end // end of [solutions] (* ****** ****** *) val () = solutions(8) (* ****** ****** *) implement main0() = () (* ****** ****** *) (* end of [queens.dats] *) Size% = 8 Cell% = 32 VDU 23,22, Size%*Cell%; Size%*Cell%; Cell%, Cell%,16,128 8,5 *font Arial Unicode MS,16 GCOL 3,11 FOR i% = 0 TO Size%-1 STEP 2 RECTANGLE FILL i%*Cell%*2,0, Cell%*2, Size%*Cell%*2 RECTANGLE FILL 0,i%*Cell%*2, Size%*Cell%*2, Cell%*2 NEXT num% = FNqueens(Size%, Cell%) SYS "Set Window Text", @hwnd%, "Total " STR\$(num%) " solutions" REPEAT : WAIT 1 : UNTIL FALSE END DEF FNqueens(n%, s%) LOCAL i%, j%, m%, p%, q%, r%, a%(), b%(), c%() DIM a%(n%), b%(n%), c%(4*n%-2) FOR i% = 1 TO DIM(a%(),1) : a%(i%) = i% : NEXT m% = 0 i% = 1 j% = 0 r% = 2*n%-1 REPEAT i% -= 1 j% = 1 p% = 0 q% = -r% REPEAT i% = 1 c%(p%) = 1 c%(q% r%) = 1 SWAP a%(i%),a%(j%) p% = i% - a%(i%) n% q% = i% a%(i%) - 1 b%(i%) = j% j% = i% 1 UNTIL j% The following is a re-implementation of the algorithm given above but using the MC package that allows machine independent runtime generation of native machine code (currently only available for i386 machines).

To stop ignoring everyone, you unset the mode by typing: /mode yournickname -D Please note that this mode is reset on each reconnect.